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1. INTRODUCTION

Over the past five years we have been gathering combustion diagnostic information from the burning

of solid propellants over a pressure range of 0.1 to 2.0 MPa (Vanderhoff 1988, 1989, 1991; Vanderhoff,

Kotlar, and Teague 1990, Vanderhoff, Teague, and Kotlar 1991, 1992; Vanderhoff and Kotlar 1990a,

1990b; Teague and Vanderhoff 1991; Vanderhoff, Anderson, and Kotlar 1992). The experimental

technique has been optical absorption. The region of recent focus has been the dark zone since the spatial

resolution requirements am relaxed and more within the present capabilities of the experimental

arrangement. This information is used in testing or validating combustion models of the dark zone that

include detailed chemistry (Sorter 1965; Fifer et al. 1990, Vanderhoff, Anderson, and Kotlar 1992). We

report here bum rate and absorption results for two low vulnerability nitramine propellants and a single-

base propellant. See Table 1 for a description of the ingredients.

2. EXPERIMENTAL

The experimental apparatus and technique is the same that has been described recently (Vanderhoff,

Teague, and Kotlar 1992), except for the change in the method of ignition which will be described here.

A cross-sectional view of the windowed strand burner is shown on Figure 1. The technique used to ignite

the solid propellant samples has been changed from hot wire ignition to laser ignition. A nominal 25-W

CO2 laser coupled into the chamber with a ZnSe window readily ignites the propellant samples by using

irradiation times of about 0.5 s. The propellant samples are solid cylinders with typical dimensions of

6.0 mm diameter and 20 mm length. The diameter of the laser beam is 3 mm, and is positioned with an

adjustable turning mirror to. impact the propellant center. This laser ignition feature simplifies the

experimental procedure since installation of a wire ignitor is no longer necessary. The propellant sample

must be moved into the absorption beam after a background spectrum is taken and frequent dislodging

of the ignitor wire was a problem. After the propellant sample is ignited with the CO2 laser, the absence

of ignitor wire remnants removes possible perturbations such as flame holding.

The NO absorption data is composed of two vibrational hot bands that are not rotationally resolved.

Thus, to independently deduce the detector response function or effective bandwidth (full width at half

maximum - FWHM), an additional experiment was conducted using the 253.65-nm line of an Hg lamp

as a narrow line light source. For a 0.32-m spectrometer with a 1,200 groove/mm grating operating

second order, the bandwith as a function of the spectrometer entrance slit setting is shown on Figure 2.
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Table 1. Propellant Composition

Propellant Ingredient Weight
(%)

M1O Nitrocellulose (13.16% N) 98

Potassium Sulphate 1.0

Diphenylamine 1.0

XM39 RDX& 76

Cellulose Acetate Butyrate 12

Acetyl Triethyl Citrate 7.6

Nitrocellulose (12.6% N) 4.0

Ethyl Centralite 0.4

M43 RDXO 76

Cellulose Acetate Butyrate 12

Nitrocellulose 4.0

Proprietary Plasticizer 8.0

£ RDX - cyclorimehykem trinfamine.

S.... .o..oo

Pinhole

Proppellant
Feed

Figure 1. Cross section of chamber used to bum solid propellants at an elevated Pressure of nitrogen.
The laser ignition arranuement is also shown.
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Figure 2. Measured bandwidth as a function of slit setting for a 0.32-m spectrometer operating
second order with a 1.200 wrooveram gnrating.

The bandwidth is given in angstroms and the slit settings are represented by divisions where a division

corresponds to 5 pun. Slit settings ranging from 15 to 30 were used for the NO absorption measurements;

thus, the spectral resolution varied from about 0.8 to '.7 angstroms. The spatial resolution was governed

by the pinhole and is 200 pn.

3. RESULTS

Examination of video records of each propellant bum provided the necessary data for bum rate

determinations of the three propellants studied: MI0, XM39 and M43. These bum rates as a function

of pressure are shown on Figures 3-5, where the solid line is a fit to the data using the standard bum rate

equation, r = aOn. Results for a and n and their standard deviations are given in the figure captions. At

these low pressures, the single base propellant, MIO, has a noticeably higher bum rate than either of the

nitramine propellants. It is this low pressure-low bum rate characteristic that makes these nitramine

propellants low vulnerability candidates. The higher burn rate of M43 is brought about by the use of an

energetic plasticizer.
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The only other low pressure bum rate data we are aware of for these propellant formulations is some

unpublished work of Miller (1985). His experimental apparatus and detection technique is similar to the

experiment reported here, however, the bum rates were measured over a larger pressure range-I to

8 MPa nitrogen. Reasonable agreement is obtained for the nitramine propellants. For XM39, Miller

obtains values of n = 0.89 and a = 0.50 and, for M43, the values are n = 1.07 and a = 0.78. A sizeable

difference occurs in M1O for which Miller gives values of n = 0.64 and a = 3.54. These differences are

not thought to be uncertainties in the experimental technique out rather differences that come from the

propellant manufacturing process.

Determination of propellant dark zone temperatures and NO concentrations come from the absorption

spectra of the NO molecule (Mitchell and Zemansky 1971). There is such an abundance of NO in the

dark zone that (0,0) A2E - X21- transitions result in 100% absorption of the incident light. Thus, two hot

vibrational bands [(0,1) and (0,2)] are used for the absorption measurements. A sample spectrum is shown
in Figure 6. There are 531 data points and the solid line represents a least-squares fit to the data where

2,125 rotational transitions are considered in the fitting procedure. Various parameters including the

temperature and NO mole fraction are allowed to vary to fit the data. A temperature of 1,419 K and an
NO mole fraction of 0.11 provided the best fit to this MI0 propellant absorption data than 5.7 mm from

the surface. Figure 6 illustrates the large attenuation of the incident light. This broadband attenuation has

been accounted for by a multiplicitive term in the absorption equation (Vanderhoff, Anderson, and Kotlar

1992; Vanderhoff, Teague, and Kotlar 1992) that is a power series which includes four coefficients that

are allowed to vary to approximate the baseline.

Many of these absorption spectra are obtained as a function of distance from the surface for each

propellant burn experiment. Dark zone temperature and NO mole fraction values for MIO propellant

obtained from a least-squares fitting procedure are shown in Figures 7-10. Different symbols are used

to denote data taken at different pressures. The dark zone temperatures for the higher pressures are shown

on Figure 7 and the two lower pressures are shown on Figure 8. The video records show that the dark

zone was not well defined for many of the M1O propellant bums (i.e.. the luminous flame attacheJ and

detached from the surface in a random fashion). At the lowest pressure the luminous flame did not

appear. In addition to the variable position of the luminous flame, this propellant produced enough soot

to interfere with the optical measurements. Considering these variables, it is not surprising to find

substantial scatter in the MIO propellant data. The results of Figure 8 indicate a dropping temperature as

the distance from the propellant increases. Here the luminous flame does not establish itself and

4
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is expected with distance from the propellant surface. Although the temperature range is from about 1250

to 1,550 K, most of the experimental data fall in the range from 1.250 to 1,400 K and we estimate the

dark zone temperature for M10 to be 1,325 ±75 K.

NO absorption spectra have also been obtained for two RDX nitramine propellants, XM39 and M43.

These propellants have been designed for low vulnerability and they bum rather poorly at low pressure;

thus, there is appreciable scatter for these measurements. Gas phase temperatures for XM39 propellant

as a function of distance from the propellant surface are shown on Figures II and 12. The dark zone

temperatures for XM39 mostly fall between 1,100 and 1,400 K, where the lower pressure data of

Figure 12 give the lower temperatures. Our estimate of the dark zone temperature for XM39 propellant

is 1,275 ±75 K. The NO concentrations are given in Figures 13 and 14 and range in value from about

0.12 to 0.18. The lower pressure data indicates higher NO concentrations. Our estimate for the NO

fraction in the dark zone of XM39 propellant is 0.15 ±0.02.

Temperatures ranging from about 1,050 to 1,450 K are obtained for the M43 propellant (see

Figure 15) and our estimate for the dark zone temperature is 1,200 ±100 K. The NO mole fractions for

M43 are displayed in Figure 16 and range from about 0.12 to 0.30. However, most of the values fall

within a tighter range, and our estimate for the NO mole fraction is 0.22 ±0.03.

4. DISCUSSION

In the last section, estimates for propellant dark zone temperatures and NO concentrations have been

given. How these values compare to other published data and how they relate to energy conservation

will be discussed in this section.

Comparisons of present data with other published data are given in Tables 2 and 3 for single-base and

nitramine propellants, respectively. No published data for dark zone temperatures and NO concentrations

have been found for single-base propellants. Thus, the comparison in Table 2 is between single-base and

double-base propellants. Four double-base propellants are shown for comparison, and the final equilibrium

temperatures for these propellants are also given in the last column. The equilibrium temperature has been

calculated from the NASA-Lewis thermochemical equilibrium code (Svehla and McBride 1973) and

provides a basis for ordering these propellants. The ordering follows from the fact that these propellants

bum rich; thus, the final flame temperature is strongly dependent on the dark zone temperature and the

7
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Table 2. Comparison of Dark Zone Temperatures, NO Mole Fractions and Final
Equilibrium Temperatures for Single- and Double-Base Solid Propellants

Dark Zone Equilibrium
Propellant Reference Temperature NO Fraction Temperature

(K) (K)

MI0 Present Data 1,325 0.145 2,585

JAr A 1,450 0.24 2,793

DBI& B 1,500 0.21 2,813

M92 A 1,500. 0.30 3,023

DB2a C 1,600 0.24 3,076

a Propellant cmpsitions we given in the Appendix.

Notes: A - see Vandedoff et al. (1992a. 1992b).
B - see Lengeile et al. (1984).
C - see HeUer and Gordon (1955).

9



Table 3. Comparison of Dark Zone Temperatures, NO Mole Fractions, and Final
Equilibrium Temperatures for Solid Nitramine Propellants

Dark Zone Equilibrium
Propellant Reference Temperature NO Fraction Temperature

(K) (K)

HMX-PEa D 1,300 0.17 1,928

HMX.a A 1,310 0.13 2,0)8

XM39 Present Data 1,275 0.15 2,354

M43 Present Data 1,200 0.22 2,452

P ropellamt comitionsm given in the Appendix.

Notes: A - see Vmnderhoff et al. (1992a, 1992b).
D - see Kubota (1982).

amount of oxidizer left to be consumed. The only oxidizer which is far in excess of the equilibrium value

is NO; thus, the temperature increase from the dark zone to the luminous flame is dependent primarily

on the amount of NO present in the dark zone. MIO propellant has the lowest final flame temperature

and the lowest NO fraction, which is consistent with the ordering scheme. M43 has the highest flame

temperature for the nitramines comparison and has the highest NO mole fraction in the dark zone. XM39

is intermediate in final flame temperature and has an intermediate NO mole fraction. All of the measured

dark zone temperatures for nitramine propellants are within about 100 K of each other.

5. SUMMARY

From the video records, low pressure bum rates have been measured for M10, XM39, and M43 solid

propellants. Absorption spectroscopy of the NO molecule provided the means to obtain dark zone

temperatures and NO concentrations for these propellants as both a function of pressure and distance from

the propellant surface. Although no published data were found for a direct comparison, the present data

correlate well with data on similar propellants.

10
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Table A-I. Ingredients and Composition for Various Solid Propellants

Propellant Ingredient Weight

JA2 Nitrocellulose (13.04% N) 58.2

Nitroglycerin 15.8

DEGDNa 25.2

AKARDIT U 0.05

M9 Nitrocelulose (13.29% N) 57.6

Nitroglycerin 40.02

Ethyl Centralite 0.73

Potassium Nitrate 1.63

DBI Nitrocellulose (11.6% N) 52

Nitroglycerin 43

Ethyl Centralite 3

DB2 Nitrocellulose (12.6% N) 55

Nitroglycerin 45

HMX2 iM~b 80

Binder lc 20

HMX-PE HMX 80

Binder 2 d 20

•Diethylene Glycol Dinitrate

b Cyclotetamthyleneteuinritrunine
c Polymste Bindu
d Polyether Binder

NOTE: The nitration level N is ais given for the nitrocellulose.
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